Forcing axioms and projective sets of reals
نویسنده
چکیده
This paper is an introduction to forcing axioms and large cardinals. Specifically, we shall discuss the large cardinal strength of forcing axioms in the presence of regularity properties for projective sets of reals. The new result shown in this paper says that ZFC + the bounded proper forcing axiom (BPFA) + “every projective set of reals is Lebesgue measurable” is equiconsistent with ZFC + “there is a Σ1 reflecting cardinal above a remarkable cardinal.”
منابع مشابه
Techniques for Approaching the Dual Ramsey Property in the Projective Hierarchy
Set theory of the reals is a subfield of Mathematical Logic mainly concerned with the interplay between forcing and Descriptive Set Theory. One of the motivations behind Descriptive Set Theory is the strong intuition that simple sets of real numbers should not display irregular behaviour, or, in other words, they should be topologically and measure theoretically nice. In order to fill this stat...
متن کاملProjective Forcing
We study the projective posets and their properties as forcing notions. We also define Martin’s axiom restricted to projective sets, MA(proj), and show that this axiom is weaker than full Martin’s axiom by proving the consistency of ZFC + XH + MA(proj) with “there exists a Suslin tree”, “there exists a non-strong gap”, “there exists an entangled set of reals” and “there exists K < 2No such that...
متن کاملSubcomplete Forcing and L-Forcing
ABSRACT In his book Proper Forcing (1982) Shelah introduced three classes of forcings (complete, proper, and semi-proper) and proved a strong iteration theorem for each of them: The first two are closed under countable support iterations. The latter is closed under revised countable support iterations subject to certain standard restraints. These theorems have been heavily used in modern set th...
متن کاملNon-Glimm–Effros equivalence relations at second projective level
A model is presented in which the Σ1 2 equivalence relation xCy iff L[x] = L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm–Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an “ill”founded “length” of the iteration. In another model of this type, we get an example of a Π1 2 non-Glimm–Effros equivalenc...
متن کاملAbsoluteness for Universally Baire Sets and the Uncountable I
Cantor’s Continuum Hypothesis was proved to be independent from the usual ZFC axioms of Set Theory by Gödel and Cohen. The method of forcing, developed by Cohen to this end, has lead to a profusion of independence results in the following decades. Many other statements about infinite sets, such as the Borel Conjecture, Whitehead’s problem, and automatic continuity for Banach Algebras, were prov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001